PERMOS

Publications

Rapports PERMOS

Nous publions régulièrement des rapports sur nos mesures du pergélisol dans les Alpes suisses ! Les résultats et les chiffres sont disponibles dans divers rapports et publications, en ligne et sur papier.

Le «Swiss Permafrost Bulletin» est notre rapport annuel sur les observations du pergélisol au cours d'une année hydrologique que nous publions en ligne depuis 2019. Chaque année nous publions aussi un communiqué de presse au sujet de nos observations les plus récentes via l'Académie suisse des sciences naturelles SCNAT. Les rapports sur le "Pergélisol en Suisse" (Rapports Glaciologiques du Pergélisol) sont imprimés et couvrent une période de quatre ans qui correspond à une durée de contrat du réseau PERMOS. Tous nos rapports peuvent être téléchargés gratuitement dans la liste ci-dessous. Des exemplaires imprimés des rapports glaciologiques peuvent être commandés gratuitement auprès du PERMOS Office.

Le Bulletin du pergélisol suisse est notre rapport annuel publié en ligne. Il contient la description de nos mesures les plus récentes au cours d'une année hydrologique (1er octobre au 30 septembre). Les données correspondantes sont publiées sous forme d'un DOI aussi disponibe sur ce site.

  • PERMOS 2024. Swiss Permafrost Bulletin 2023. Noetzli, J. and Pellet, C. (eds.) 25 pp, doi:10.13093/permos-bull-2024. [pdf 5.2 MB]
  • PERMOS 2023. Swiss Permafrost Bulletin 2022. Noetzli, J. and Pellet, C. (eds.) 22 pp, doi:10.13093/permos-bull-2023. [pdf 11.3 MB]
  • PERMOS 2022. Swiss Permafrost Bulletin 2021. Noetzli, J. and Pellet, C. (eds.) 21 pp, doi:10.13093/permos-bull-2022. [pdf 2.1 MB]
  • PERMOS 2021. Swiss Permafrost Bulletin 2019/2020. Noetzli, J. and Pellet, C. (eds.) 21 pp, doi:10.13093/permos-bull-2021. [pdf 5.7 MB]
  • PERMOS 2020. Swiss Permafrost Bulletin 2018/2019. Pellet, C. and Noetzli, J. (eds.) 20 pp, doi:10.13093/permos-bull-2020. [pdf 3.9 MB]

La série intitulée Pergélisol en Suisse (Rapport Glaciologique du Pergélisol) est constituée de rapports imprimés couvrant une période de 4 ans. Ils sont publiés par la Commission suisse d'observation de la Cryosphère de l'Académie suisse des sciences naturelles et complémentent les rapports glaciologiques des glaciers publiés par GLAMOS.

  • PERMOS 2019. Permafrost in Switzerland 2014/2015 to 2017/2018. Noetzli, J., Pellet, C., and Staub, B. (eds.), Glaciological Report (Permafrost) No. 16–19 of the Cryospheric Commission of the Swiss Academy of Sciences, 104 pp, doi.org/10.13093/permos-rep-2019-16-19. [pdf 27.2 MB]
  • PERMOS 2016. Permafrost in Switzerland 2010/2011 to 2013/2014. Noetzli, J., Luethi, R., and Staub, B. (eds.), Glaciological Report (Permafrost) No. 12–15 of the Cryospheric Commission of the Swiss Academy of Sciences, 85 pp, doi.org/10.13093/permos-rep-2016-12-15. [pdf 17.8 MB]
  • PERMOS 2013. Permafrost in Switzerland 2008/2009 and 2009/2010. Noetzli, J. (ed.), Glaciological Report (Permafrost) No. 10/11 of the Cryospheric Commission of the Swiss Academy of Sciences, 80 pp, doi.org/10.13093/permos-rep-2013-10-11. [pdf 7.9 MB]
  • PERMOS 2010. Permafrost in Switzerland 2006/2007 and 2007/2008. Noetzli, J. and Vonder Muehll, D. (eds.), Glaciological Report (Permafrost) No. 8/9 of the Cryospheric Commission of the Swiss Academy of Sciences, 68 pp, doi.org/10.13093/permos-rep-2010-8-9. [pdf 9.3 MB]
  • PERMOS 2009. Permafrost in Switzerland 2004/2005 and 2005/2006. Noetzli, J., Naegeli, B., and Vonder Muehll, D. (eds.), Glaciological Report (Permafrost) No. 6/7 of the Cryospheric Commission of the Swiss Academy of Sciences, 100 pp, doi.org/10.13093/permos-rep-2009-6-7. [pdf 9 MB]
  • Vonder Muehll, D., Noetzli, J., Roer, I., Makowski, K. and Delaloye, R. 2007. Permafrost in Switzerland 2002/2003 and 2003/2004, Glaciological Report (Permafrost) No. 4/5 of the Cryospheric Commission of the Swiss Academy of Sciences and Department of Geography, University of Zurich, 106 pp, doi.org/10.13093/permos-rep-2007-4-5. [pdf 11 MB]
  • Vonder Muehll, D., Noetzli, J., Makowski, K. and Delaloye, R. 2004. Permafrost in Switzerland 2000/2001 and 2001/2002, Glaciological Report (Permafrost) No. 2/3 of the Glaciological Commission of the Swiss Academy of Sciences and Department of Geography, University of Zurich, 86 pp, doi.org/10.13093/permos-rep-2004-2-3. [pdf 6.4 MB]
  • Vonder Muehll, D., Delaloye, R., Haeberli, W., Hoelzle, M. and Krummenacher, B. 2001. Permafrost Monitoring Switzerland PERMOS, 1. Jahresbericht 1999/2000, Glaciological Report (Permafrost) No. 1 of the Glaciological Commission of the Swiss Academy of Sciences, 32 pp (in German). [pdf 1.3 MB]

Les résultats les plus récents sont décrits dans un communiqué de presse annuel publié au printemps par l'Académie suisse des sciences naturelles (SCNAT).

  • 2024-06-06  
    Pas de répit pour le pergélisol en Suisse
    [de] [fr]
  • 2022-04-26  
    Refroidissement superficiel du pergélisol en suisse
    [de] [fr]
  • 2021-04-08  
    Le pergélisol en Suisse se réchauffe de plus en plus
    [de] [fr]
  • 2020-07-21  
    Réchauffement du pergélisol en Suisse, 20 ans de mesures
    [de] [fr]
  • 2019-03-19  
    Reprise du réchauffement du pergélisol en suisse
    [de] [fr]
  • 2018-04-09  
    Short break in the permafrost warming during the observation year 2016/2017. 
    [de] [fr]
  • 2017-02-06  
    Répit temporaire dans le réchauffement du pergélisol alpin
    [de] [fr]
  • 2016-02-22  
    Températures record dans le pergélisol alpin
    [de] [fr]

Figures

Jetez un coup d'œil à nos figures clés ! Pour chacune des variables observées, nous produisons une figure de synthèse dans lesquelles vous trouverez tous les résultats clés en un seul endroit.

 

Explorez nos figures principales illustrant les résultats clés du réseau PERMOS !

Toutes les figures peuvent être téléchargées et utilisées librement à condition que le réseau PERMOS soit mentionné comme en étant la source et que le texte joint aux figures ci-dessous soit utilisé comme légende. Pour toutes questions liées aux figures, à leur adaptation ou aux données, contactez le PERMOS Office.

Autres rapports

Les données PERMOS constituent des données de référence pour décrire l'évolution à long terme du pergélisol dans les Alpes suisses. Nous contribuons à des rapports sur la observation (inter)nationale de la cryosphère et du climat.

Les actualités et les résultats de l'observation nationale de la cryosphère - comprenant la neige, les glaciers et le pergélisol - sont publiés chaque année dans la revue du Club alpin suisse (CAS) "Die Alpen – Les Alpes – Le Alpi" en allemand, en français et en italien (voir la liste des Rapports sur la cryosphère en Suisse ci-dessous).

PERMOS contribue aussi à des rapports environnementaux et à des rapports d'évaluation sur le changement climatique et ses impacts, tant au niveau national qu'international.

Nous publions chaque un rapport dans le journal du Club Alpin Suisse - "Die Alpen/Les Alpes/Le Alpi", en collaboration avec les réseaux nationaux d'observation de la neige et des glaciers. Depuis 2022, le rapport conjoint est disponible en ligne et un article sur un sujet d'actualité lié à la cryosphère l'a remplacé dans l'édition imprimée.

  • L'hiver le moins enneigé qu'on ait connu. Rapport sur la cryosphère 2023. Rapport en ligne Die Alpen – Les Alpes – Le Alpi, 11.03.2024.
    [de] [fr]
  • 2022: une anné extrême. Rapport sur la cryosphère 2022. Rapport en ligne Die Alpen – Les Alpes – Le Alpi, 28.03.2023.
    [de] [fr]
  • Pas de répit pour les glaciers et le pergélisol en 2021 malgré la neige en quantité. Rapport sur la cryosphère 2021. Rapport en ligne Die Alpen – Les Alpes – Le Alpi, 30.03.2022.
    [de] [fr]
  • Schnee, Gletscher und Permafrost 2019/2020. Die Alpen – Les Alpes – Le Alpi, Jg. 97, Nr. 6, 52–55, 2021.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2018/2019. Die Alpen – Les Alpes – Le Alpi, Jg. 96, Nr. 6, 48–53, 2020.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2017/2018. Die Alpen – Les Alpes – Le Alpi, Jg. 95, Nr. 7, 40–45, 2019.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2016/2017. Die Alpen – Les Alpes – Le Alpi, Jg. 94, Nr. 8, 40–45, 2018.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2015/2016. Die Alpen – Les Alpes – Le Alpi, Jg. 93, Nr. 8, 45–51, 2017.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2014/2015. Die Alpen – Les Alpes – Le Alpi, Jg. 92, Nr. 8, 36-43, 2016.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2013/2014. Die Alpen – Les Alpes – Le Alpi, Jg. 91, Nr. 8, 46–52, 2015.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2012/2013. Die Alpen – Les Alpes – Le Alpi, Jg. 90, Nr. 8, 42–49, 2014.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2011/2012. Die Alpen – Les Alpes – Le Alpi, Jg. 89, Nr. 8, 52–61, 2013.
    [de] [fr] [it]
  • Schnee, Gletscher und Permafrost 2010/2011. Die Alpen – Les Alpes – Le Alpi, Jg. 88, Nr. 10, 38–44, 2012.
    [de
  • Schnee, Gletscher und Permafrost 2009/2010. Die Alpen – Les Alpes, Jg. 87, Nr. 7, 46–52, 2011.
    [de] [fr
  • Schnee – das Zünglein an der Waage: Unterschiedliche Wirkung auf Gletscher und Permafrost. Die Alpen – Les Alpes, Jg. 87, Nr. 7, 53–56, 2011.
    [de] [fr
  • Schnee, Gletscher und Permafrost 2008/2009. Die Alpen – Les Alpes, Jg. 86, Nr. 8, 42–48, 2010.
    [de] [fr
  • Schnee, Gletscher und Permafrost 2007/2008. Die Alpen – Les Alpes, Jg. 85, Nr. 9, 52–59, 2009.
    [de] [fr
  • Schnee, Gletscher und Permafrost 2005/2006 und 2006/2007. Die Alpen – Les Alpes, Jg. 84, Nr. 9, 47-56, 2008.
    [de] [fr]
  • Was Blockgletscher bewegt. Die Alpen – Les Alpes, Jg. 83, Nr. 9, 2007. [de] [fr]
  • Permafrost in den Schweizer Alpen 2002/2003 und 2003/2004. Die Alpen – Les Alpes, Jg. 81, Nr. 10, 2005.
    [de] [fr]
  • Permafrost in den Schweizer Alpen 2000/2001 und 2001/2002. Die Alpen – Les Alpes, Jg. 79, Nr. 10, 2003.
    [de] [fr]
  • Mit PERMOS Permafrost erforschen. Die Alpen – Les Alpes, Jg. 78, Nr. 10, 2002.
    [de] [fr]

  • BAFU und MeteoSchweiz, 2020. Klimawandel in der Schweiz. Indikatoren zu Ursachen, Auswirkungen, Massnahmen. Umwelt-Zustand Nr. 2013, 105 pp.
  • IPCC 2019. Special Report on the Ocean and Cryosphere, Chapter 2 High Mountain Areas. Hock, R., Rasul, G., Adler, C, Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H., Allen, S., Arenson, L., Baneerjee, S., Barr, I., Bórquez, R., Brown, L., Cao, B., Carey, M., Cogley, G., Fischlin, A., de Sherbinin, A., Eckert, N., Geertsema, M., Hagenstad, M., Honsberg, M., Hood, E., Huss, M., Jimenez Zamora, E., Kotlarski, S., Lefeuvre, P.-M, López Moreno, J. I., Lundquist, J., McDowell, G., Mills, S., Mou, C., Nepal, S., Noetzli, J., Palazzi, E., Pepin, N., Rixen, C., Shahgedanova, M., McKenzie Skiles, S., Vincent, C., Viviroli, D., Weyhenmeyer, G., Yangjee Sherpa, P., Weyer, N., Wouters, B., Yasunari, T. J., You, Q.,Zhang, Y., 94 pp.
  • MeteoSwiss 2018. National Climate Observing System (GCOS Switzerland). Update 2018, 105 pp.
  • Huggel, C., Marty, C., Noetzli, J. and Paul, F. 2016. Schnee, Gletscher und Permafrost. In: Akademien Schweiz 2016. Brennpunkt Klima Schweiz. Grundlagen, Folgen, Perspektiven. Swiss Academies Reports 11(5), 80–83.
  • Plattner, G.-K, Stocker T.F., Marty, C., Noetzli, J., Paul, F. und Huggel, C. 2016. Ozean und Kryosphäre. In: Akademien Schweiz 2016. Brennpunkt Klima Schweiz. Grundlagen, Folgen, Perspektiven. Swiss Academies Reports 11(5), 60–67.
  • BAFU 2016: Sommer 2015: Hitze, Trockenheit und Auswirkungen auf Mensch und Umwelt. Bundesamt für Umwelt BAFU, Bern. Umwelt-Zustand Nr. 1629, 108 pp.
  • Swiss Confederation 2013. Impacts, vulnerability assessment and adaptation. Perroud, M. and Hohmann R. (eds). In: Switzerland’s Sixth National Communication and First Biennial Report under the UNFCCC, edited by Federal Office for the Environment, Bern, 321 pp.
  • Gärtner-Roer, I., Christiansen, H.H., Etzelmüller, B., Farbrot, H., Gruber, S., Isaksen, K., Kellerer-Pirklbauer, A., Krainer, K. and Noetzli, J. 2010. Permafrost. In: Voigt, T., Füssel, H.M., Gärtner-Roer, I., Huggel, C., Marty, C., and Zemp, M. (eds.): Impacts of climate change on snow, ice, and permafrost in Europe: observed trends, future projections, and socio-economic relevance. European Topic Centre on Air and Climate Change, Technical Paper 2010/13, 50–69.

Publications scientifiques

Le PERMOS Office et les partenaires de PERMOS sont très actifs dans la recherche sur le pergélisol. Les données PERMOS sont largement utilisées dans les études scientifiques portant sur les Alpes suisses, les montagnes, ou le monde entier, et utilisant diverse approches de mesure, de modélisation ou de statistiques.

La liste ci-dessous fournit les références et les liens vers les publications scientifiques de ces dix dernières années utilisant des données obtenues dans le cadre de PERMOS ou sur les sites PERMOS. Veuillez contacter le PERMOS Office ou les auteurs si vous avez des questions.

  • ​​​​​​Kellerer-Pirklbauer, A., Bodin, X., Delaloye, R., Lambiel, C., Gärtner-Roer, I., Bonnefoy-Demongeot, M., Carturan, L., Damm, B., Eulenstein, J., Fischer, A., Hartl, L., Ikeda, A., Kaufmann, V., Krainer, K., Matsuoka, N., Morra Di Cella, U., Noetzli, J., Seppi, R., Scapozza, C., Schoeneich, P., Stocker-Waldhuber, M., Thibert, E., and Zumiani, M. 2024. Acceleration and interannual variability of creep rates in mountain permafrost landforms (rock glacier velocities) in the European Alps in 1995–2022. Environmental Research Letters 19, 034022, doi.org/10.1088/1748-9326/ad25a4.
  • Wicky, J., Delaloye, R., Hilbich, C., Hauck, C. 2024. Modelling the link between air convection and the occurrence of short-term permafrost in a low altitude cold talus slope. Permafrost and Periglacial Processes, 0, 1–16, doi:10.1002/ppp2224.
  • Farzamian, M., Blanchy, G., McLachlan, P., Vieira, G., Esteves, M., de Pablo, M.A., Triantafilis, J., Lippmann, E., Hauck, C. 2024. Advancing Permafrost Monitoring with Autonomous Electrical Resistivity Tomography (A-ERT): Low-Cost Instrumentation and Open-Source Data Processing Tool. Geophysical Research Letters, 51 (6), doi.org/10.1029/2023GL105770.
  • Kenner, R., Noetzli, J., Bazargan, M., and Scherrer, S.C. 2024. Response of alpine ground temperatures to a rising atmospheric 0 °C isotherm in the period 1955–2021. Science of The Total Environment, 924, 171446, doi.org/10.1016/j.scitotenv.2024.171446.

  • Buckel, J., Mudler, J., Gardeweg, R., Hauck, C., Hilbich, C., Frauenfelder, R., Kneisel, C., Buchelt, S., Blöthe, J. H., Hördt, A., and Bücker, M. 2023. Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements, The Cryosphere, 17, 2919–2940, doi.org/10.5194/tc-17-2919-2023.
  • Haeberli, W., Noetzli, J., and Vonder Muehll, D. 2023. Using borehole temperatures in knowledge transfer about mountain perma­frost: The example of the 35-year time series at Murtèl-Corvatsch (Swiss Alps). Journal of Alpine Research/Revue de géographie alpine, 111-2.
  • Herring, T, Lewkowicz, AG, Hauck, C, Hilbich, C., Mollaret, C., Oldenborger, G.A., Uhlemann, S., Farzamian, M., Calmels, F., Scandroglio, R. 2023: Best practices for using electrical resistivity tomography to investigate permafrost. Permafrost and Periglac Process. 2023; 1-19. doi:10.1002/ppp.2207.
  • Phillips, M., Buchli, C., Weber, S., Boaga, J., Pavoni, M., and Bast, A. 2023. Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost. The Cryosphere, 17, 753–760, doi.org/10.5194/tc-17-753-2023.
  • Widmer, L., Phillips, M., and Buchli, C. 2023. Brief communication: Comparison of the performance of thermistors and digital temperature sensors in a mountain permafrost borehole. The Cryosphere, 17, 4289–4295, doi.org/10.5194/tc-17-4289-2023.

  • Cicoira, A., Weber, S., Biri, A., Buchli, B., Delaloye, R., Da Forno, R., Gaertner-Roer, I., Gruber, S., Gsell, T., Hasler, A., Lim, R., Limpach, P., Mayoraz, R., Meyer, M., Noetzli, J., Phillips, M., Pointner, E., Raetzo, H., Scapoza, C., Strozzi, T., Thiele, L., Vieli, A., Vonder Mühll, D., Wirz, V., and Beutel, J. 2022. Kinematic observations of the mountain cryosphere using in-situ GNSS instruments. Earth Systems Science Data, doi.org/10.5194/essd-2021-176.
  • Gaertner-Roer, I., Brunner, N., Delaloye, R., Haeberli, W., Kääb, A., Thee, P. 2022. Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps. The Cryosphere, 16(5), 2083­–2101, doi.org/10.5194/tc-16-2083-2022.
  • Gudmundsson, L., Kirchner, J., Gädeke, A., Noetzli, J., and Biskaborn, B.K. 2022. Attributing observed permafrost warming in the northern hemisphere to anthropogenic climate change. Environmental Research Letters, 17, 095014, doi.org/10.1088/1748-9326/ac8ec2.
  • Hoelzle, M., Hauck, C., Mathys, T., Noetzli, J., Pellet, C., and Scherler, M. 2022. Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps. Earth Systems Science Data, 14, 1531–1547, doi.org/10.5194/essd-14-1531-2022.
  • Noetzli, J., Christiansen, H.H, Guglielmin, M., Hrbáček, F., Isaksen, K., Smith, S. L., Zhao, L. and Streletskiy, D. A. 2022. Permafrost temperature and active layer thickness. In: State of the Climate in 2021. Bulletin of the American Meteorological Society, 103 (8), 41–43, doi.org/10.1175/BAMS-D-22-0092.1.
  • Pellet.C., Bodin, X., Cusicanqui, D., Delaloye, R., Kääb, A., Kaufmann, V., Noetzli, J., Thibert, E., Vivero, S. and Kellerer-Pirklbauer, A. 2022. Rock glacier velocity. In: State of the Climate in 2021. Bulletin of the American Meteorological Society, 103 (8), 43–S45, doi.org/10.1175/BAMS-D-22-0092.1.
  • Smith, S.L., O’Neill, H.B., Isaksen, K., Noetzli, J., and Romanovsky, V.E. 2022. The changing thermal state of permafrost. Nature Reviews Earth and Environment, 3, doi.org/10.1038/s43017-021-00240-1.

  • Haberkorn, A., Kenner, R., Noetzli, J., and Phillips, M. 2021. Changes in Ground Temperature and Dynamics in Mountain Permafrost in the Swiss Alps. Frontiers in Earth Sciences, 9:626686, doi.org/10.3389/feart.2021.626686.
  • Gärtner-Roer I., and Hoelzle M. 2021. Rockglaciers of the Engadine. In: Reynard E. (eds.) Landscapes and Landforms of Switzerland. World Geomorphological Landscapes. Springer, Cham, doi.org/10.1007/978-3-030-43203-4_16.
  • Kummert, M., Bodin, X., Braillard, L., and Delaloye, R. 2021. Pluri‐decadal evolution of rock glaciers surface velocity and its impact on sediment export rates towards high alpine torrents. Earth Surface Processes and Landforms 46, 3213–3227, doi.org/10.1002/esp.5231.
  • Noetzli, J., Arenson, L., Bast, A., Delaloye, R. Farinotti, D., Gubler, H.-U, Gruber, S., Haeberli, W., Hasler, A., Hauck, C., Hiller, M., Hoelzle, M., Pellet, C., Springman, S., Vonder Muehll D., and Phillips, M. 2021. Best practice for measuring permafrost temperature in boreholes based on the experience in the Swiss Alps. Frontiers in Earth Science, doi.org/10.3389/feart.2021.607875.
  • Noetzli, J., Christiansen, H.H., Isaksen, K., Smith, S., Zhao, L., and Streletskiy, D. A. 2021. Permafrost thermal state. In: State of the Climate in 2020. Bulletin of the American Meteorological Society. doi.org/10.1175/2021BAMSStateoftheClimate.1
  • Pruessner, M., Huss, M., Phillips, and Farinotti, D. 2021. A framework for modeling rock glaciers and permafrost at the basin‐scale in high alpine catchments. Journal of Advances in Modeling Earth Systems, 13 (4), doi.org/10.1029/2020MS002361.

  • Boaga, J., Phillips, M., Noetzli, J., Haberkorn, A., Kenner, R., and Bast, A. 2020. A comparison of frequency domain electro-magnetometry, electrical resistivity tomography and borehole temperatures to assess the presence of ice in a rock glacier. Frontiers in Earth Science, 8:586430, doi.org/10.3389/feart.2020.586430.
  • Cicoira, A., Marcer, M., Gärtner‐Roer, I., Bodin, X., Arenson, L. U., and Vieli, A. 2020. A general theory of rock glacier creep based on in-situ and remote sensing observations. Permafrost and Periglacial Processes, 32(1), 139–153, doi.org/10.1002/ppp.2090.
  • Etzelmueller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M., Isaksen, K., Noetzli, J., Oliva, M., and Ramos, M., 2020. Twenty years of European Mountain Permafrost dynamics – the PACE Legacy. Environmental Research Letters, 15, 104070, doi.org/10.1088/1748-9326/abae9d.
  • Kenner, R., 2020. Mass wasting processes affecting the surface of an alpine talus slope: annual sediment budgets 2009-2018 at Flüelapass, eastern Swiss Alps. Land Degradation and Development, 31, 4, 451–462, doi.org/10.1002/ldr.3462.
  • Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M., 2020. How rock glacier hydrology, deformation velocities and ground temperatures interact: examples from the Swiss Alps. Permafrost and Periglacial Processes, 31, 1, 3–14, doi.org/10.1002/ppp.2023.
  • Mair, D., Lechmann, A., Delunel, R., Yeşilyurt, S., Tikhomirov, D., Vockenhuber, C., Christl, M., Akçar, N., and Schlunegger, F. 2020. The role of frost cracking in local denudation of steep Alpine rockwalls over millennia (Eiger, Switzerland). Earth Surface Dynamics, 637–659, doi.org/10.5194/esurf-8-637-2020.
  • Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C., and Hauck, C. 2020. Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to Image Subsurface Ice, Water, Air, and Rock Contents. Frontiers in Earth Science, 8, doi.org/10.3389/feart.2020.00085.
  • Noetzli, J. 2020. Permafrost in den Alpen – Langzeitbeobachtung und Entwicklung über zwei Jahrzehnte. In: Lozán, J. L., Breckle, S.-W., Escher-Vetter, H., Grassl, H., Kasang, D., Paul, F. und Schickdorff, U. (Hrsg.). Warnsignal Klima: Hochgebirge im Wandel, 166–173, Hamburg, Wissenschaftliche Auswertungen, doi.org/10.2312/warnsignal-klima.hochgebirge-im-wandel.03.
  • Noetzli, J., Christiansen, H.H., Isaksen, K., Smith, S., Zhao, L., and Streletskiy, D. A. 2020. Permafrost thermal state. In: State of the Climate in 2019. Bulletin of the American Meteorological Society, 101 (8), 34–36, doi.org/10.1175/BAMS-D-20-0104.1.
  • Pellet, C., and Noetzli, J. 2020. Réchauffement du pergélisol en Suisse: 20 ans de mesures. GEOAgenda, 3, 10–14.
  • Phillips, M., Haberkorn, A., Kenner, R., and Noetzli, J. 2020. Current changes in mountain permafrost based on observations in the Swiss Alps. Swiss Bulletin für angewandte Geologie. 25 (1+2), 53–63.
  • Scapozza C., Deluigi N., Del Siro C., Pollo A. and Antognini M. 2020. Il permafrost nelle Alpi Ticinesi (2017/2018 e 2018/2019). Bollettino della Società ticinese di scienze naturali 108, 33–43. https://repository.supsi.ch/12077.
  • Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X., Kääb, A., Mätzler, E. and Schrott, L. 2020. Monitoring rock glacier kinematics with satellite synthetic aperture radar. Remote Sensing, 12(3), 559, doi.org/10.3390/rs12030559.
  • Weigand, M., Wagner, F. M., Limbrock, J. K., Hilbich, C., Hauck, C., and Kemna, A. 2020. A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments. Geoscientific Instrumentation, Methods and Data Systems, 9(2), 317–336, doi.org/10.5194/gi-9-317-2020.
  • Wicky, J. and Hauck, C. 2020. Air Convection in the Active Layer of Rock Glaciers. Frontiers of Earth Science 8:335, doi.org/10.3389/feart.2020.00335.

  • Biskaborn, B.K., Smith, S.L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D.A., Schoeneich, P., Romanovsky, V.E., Lewkowicz, T., Abramov, A., Allard, M., Boike, J., Cable, W.L., Christiansen, H.H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G., Guglielmin, M., Ingeman- Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kroger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A.B.K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H. 2019. Permafrost is warming at a global scale. Nature Communications 10, 264, doi.org/10.1038/s41467-018-08240-4.
  • Cicoira, A., Beutel, J., Faillettaz, J., Gärtner-Roer, I., and Vieli, A. 2019. Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach. The Cryosphere 16, doi.org/10.5194/tc-13-927-2019.
  • Kenner, R. 2019. Geomorphological analysis on the interaction of Alpine glaciers and rock glaciers since the Little Ice Age. Land Degradation and Development, doi.org/10.1002/ldr.3238.
  • Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., and Phillips, M. 2019. Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ice content in the Swiss Alps. The Cryosphere, 13, 1925–1941, doi.org/10.5194/tc-13-1925-2019.
  • Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R. and Hauck, C. 2019. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. The Cryosphere, 13 (10), 2557–2578, doi.org/10.5194/tc-13-2557-2019.
  • Mudler, J., Hördt, A., Przyklenk, A., Fiandaca, G., Maurya, P.K. and Hauck, C. 2019. Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method–first applications in periglacial environments.The Cryosphere, 13 (9), 2439–2456, doi.org/10.5194/tc-13-2439-2019.
  • Noetzli, J. and Phillips, M. 2019. Mountain permafrost hydrology. Hydro-CH2018 Project. Commissioned by the Federal Office for the Environment (FOEN), Bern, Switzerland, 18 pp, doi.org/10.16904/slf.1.
  • Noetzli, J., Biskaborn, B.K., Christiansen, H.H., Isaksen, K., Schoeneich, P., Smith, S., Vieira, G., Zhao, L., and Streletskiy, D. A. 2019. Permafrost thermal state. In: State of the Climate in 2018. Bulletin of the American Meteorological Society 100 (9), 21–22, doi.org/10.1175/2019BAMSStateoftheClimate.1
  • Wagner, F.M., Mollaret, C., Günther, T., Kemna, A. and Hauck, C. 2019. Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophysical Journal International, 219 (3), 1866–1875, doi.org/10.1093/gji/ggz402.

  • Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C. 2018. The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12, 759–794, doi.org/10.5194/tc-12-759-2018.
  • Kenner, R., Phillips, M., Limpach, P., Beutel, J., and Hiller, M. 2018. Monitoring mass movements using georeferenced time-lapse photography: Ritigraben rock glacier, western Swiss Alps. Cold Regions Science and Technology, 145, 127–134, doi.org/10.1016/j.coldregions.2017.10.018.
  • Noetzli, J., Christiansen, H.H., Deline, P., Gugliemin, M., Isaksen, K., Romanovsky, V., Smith, S., Zhao, L., and Streletskiy, D. A. 2018. Permafrost thermal state. In: State of the Climate in 2017. Bulletin of the American Meteorological Society 99 (8), 20–22, doi.org/10.1175/2018BAMSStateoftheClimate.1.
  • Pruessner, L., Phillips, M., Farinotti, D., Hoelzle, M., and Lehning, M. 2018. Near-​surface ventilation as a key for modeling the thermal regime of coarse blocky rock glaciers. Permafrost and Periglacial Processes, 29 (3), 152–163, doi.org/10.1002/ppp.1978.
  • Ravanel L., Duvillard P.-A., Jaboyedoff M., Lambiel L. 2018. Recent evolution of an ice‚Äêcored moraine at the Gentianes Pass, Valais Alps, Switzerland. Land Degradation & Development, 29 (10), 3693–3708, doi.org/10.1002/ldr.3088.

  • Deluigi N., Lambiel C., Kanevski M. (2017). Data-driven mapping of the potential mountain permafrost distribution. Science of The Total Environment 590, 370­–380, doi.org/10.1016/j.scitotenv.2017.02.041
  • Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M. 2017. Distributed snow and rock temperature modelling in steep rock walls using Alpine3D. The Cryosphere, 11, 585–607, doi.org/10.5194/tc-11-585-2017.
  • Hauck, C., Hilbich, C., and Mollaret, C. 2017. A Time-lapse Geophysical Model for Detecting Changes in Ground Ice Content Based on Electrical and Seismic Mixing Rules. In: 23rd European Meeting of Environmental and Engineering Geophysics, Malmö, 3.–7.9. 2017, doi.org/10.3997/2214-4609.201702024.
  • Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E., and Volken, M. 2017. Factors Controlling Velocity Variations at Short-Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps. Permafrost and Periglacial Processes, 28, 675–684, doi.org/10.1002/ppp.1953.
  • Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C. 2017. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes. The Cryosphere, 11, 2957–2974, doi.org/10.5194/tc-11-2957-2017.
  • Staub, B., Hasler, A., Noetzli, J. and Delaloye, R. 2017. Gap filling algorithm for ground surface temperature data measured in permafrost and periglacial environments. Permafrost and Periglacial Processes, doi.org/10.1002/ppp.1913
  • Streletskiy, D., Biskaborn, B., Noetzli, J., Lanckman, J-P., Romanovsky, V., Schoeneich, P., Shiklomanov, N., Smith, S., Vieira, G., and Zhao, L. 2017. Permafrost thermal state. In: State of the Climate in 2016. Bulletin of the American Meteorological Society, 99, 19–21, doi.org/10.1175/2017BAMSStateoftheClimate.1
  • Pellet, C., and Hauck, C. 2017. Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Earth Syst. Sci., 21, 3199–3220, doi.org/10.5194/hess-21-3199-2017.
  • Wicky, J. and Hauck, C. 2017. Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11(3), 1311–1325, doi.org/10.5194/tc-11-1311-2017.

  • Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M. 2016. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiology Ecology, 92, doi.org/10.1093/femsec/fiw018.
  • Luethi, R. and Phillips, M. 2016. Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation. Geographica Helvetica, 71(2), 121–131, doi.org/10.5194/gh-71-121-2016.
  • Luethi, R., Phillips, M., and Lehning, M. 2016. Estimating non-conductive heat flow leading to intra-permafrost talik formation at the Ritigraben rock glacier (Western Swiss Alps). Permafrost and Periglacial Processes, 1–12, doi.org/10.1002/ppp.1911.
  • Marmy, A., Rajczak, J., Delaloye, R., Hilbich, C., Hoelzle, M., Kotlarski, S., Lambiel, C., Noetzli, J., Phillips, M., Salzmann, N., Staub, B., and Hauck, C. 2016. Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland, The Cryosphere 10, 2693–2719, doi.org/10.5194/tc-10-2693-2016.
  • Noetzli, J., Christiansen, H., Gugliemin, M., Romanovsky, V., Shiklomanov, N., Smith, S. and Zhao, L. 2016. Permafrost thermal state. In: State of the Climate in 2015. Bulletin of the American Meteorological Society, 98, 20–21, doi.org/10.1175/2016BAMSStateoftheClimate.1.
  • Phillips, M., Haberkorn, A., Draebing, D., Krautblatter, M., Rhyner, H., and Kenner, R. 2016. Seasonally intermittent water flow through deep fractures in an Alpine rock ridge: Gemsstock, Central Swiss Alps. Cold Regions Science and Technology, 125, 117–127, doi.org/10.1016/j.coldregions.2016.02.010.
  • Pellet, C., Hilbich, C., Marmy, A. and Hauck, C. 2016. Soil Moisture Data for the Validation of Permafrost Models Using Direct and Indirect Measurement Approaches at Three Alpine Sites. Frontiers Earth Science 3:91, doi.org/10.3389/feart.2015.00091.
  • Riebler, T. 2016. Statistical analysis of spatial and temporal variability of ground surface temperatures in Alpine terrain. MSc Thesis, Department of Geography, University of Zurich, 113pp.
  • Staub, B., and Delaloye, R. 2016. Using Near-Surface Ground Temperature Data to Derive Snow Insulation and Melt Indices for Mountain Permafrost Applications. Permafrost and Periglacial Processes, doi.org/10.1002/ppp.1890.
  • Haeberli, W., Hauck, C., and Noetzli, J. 2016. Alpiner Permafrost. PROMET – Meteorologische Fortbildung, Heft 98 Hochgebirgsmeteorologie und Glaziologie, 78–94.

  • Ekici, A., Chadburn, S., Chaudhary, N., Hajdu, L. H., Marmy, A., Peng, S., Boike, J., Burke, E., Friend, A. D., Hauck, C., Krinner, G., Langer, M., Miller, P. A., and Beer, C. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere, 9, 1343–1361, doi.org/10.5194/tc-9-1343-2015
  • Haberkorn, A., Phillips, M., Kenner, R., Rhyner, H., Bavay, M., Galos, S. P., and Hoelzle, M. 2015. Thermal Regime of Rock and its Relation to Snow Cover in Steep Alpine Rock Walls: Gemsstock, Central Swiss Alps. Geografiska Annaler: Series A, Physical Geography, 97, 579–597, doi.org/10.1111/geoa.12101.
  • Haberkorn, A., Hoelzle, M., Phillips, M., and Kenner, R. 2015. Snow as a driving factor of rock surface temperatures in steep rough rock walls. Cold Regions Science and Technology, 118, 64–75, doi.org/10.1016/j.coldregions.2015.06.013.
  • Hauck, C. 2015. Bedeutende Permafrostgebiete in den Gebirgen. In: Lozán, J. L., H. Grassl, D. Kasang, D. Notz & H. Escher-Vetter (Hrsg.). Warnsignal Klima: Das Eis der Erde (Kap. 3.4), 87–93, www.klima-warnsignale.uni-hamburg.de.
  • Noetzli, J., Christiansen, H., Romanovsky, V., Shiklomanov, N., Smith, S., Viera, G., and Zhao, L. 2015. Permafrost thermal state and active layer thickness. In: State of the Climate in 2014. Bulletin of the American Meteorological Society, 97 (8), 17–18, doi.org/10.1175/2015BAMSStateoftheClimate.1.
  • Scapozza C., Baron L., Lambiel C. 2015. Borehole logging in alpine periglacial talus slopes (Valais, Swiss Alps). Permafrost and Periglacial Processes, 26, 67–83, doi.org/10.1002/ppp.1832.
  • Staub, B., Marmy, A., Hauck, C., Hilbich, C., and Delaloye, R. 2015. Ground temperature variations in a talus slope influenced by permafrost: a comparison of field observations and model simulations, Geographica Helvetica, 70, 45–62, doi.org/10.5194/gh-70-45-2015.
  • Staub, B. 2015. The evolution of mountain permafrost in the context of climate change - towards a comprehensive analysis of permafrost monitoring data from the Swiss Alps. PhD-Thesis, Faculty of Science, University of Fribourg, 225pp, http://doc.rero.ch/record/261348.

  • Kenner, R., Bühler, Y., Delaloye, R., Ginzler, C., and Phillips, M. 2014. Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology, 206, 492–504, doi.org/10.1016/j.geomorph.2013.10.020.
  • Marty, C., Abegg, B., Bauder, A., Marmy, A., Lüthi, M. P., Bavay, M., Hauck, C., Hoelzle, M. Huss, M., Salzmann, N., Schlögl, S., Steiger, R., Farinotti, D. 2014. Cryospheric aspects of climate change – impacts on snow, ice, and ski tourism. In: CH2014 – Impacts: Toward quantitative scenarios of climate change Impacts in Switzerland (Eds. Raible, C.C. and Strassmann, K.M.), Cryospheric aspects of climate change – impacts on snow, ice, and ski tourism. OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, 49-56, ISBN: 978-3-033-04406-7.
  • Noetzli, J., Christiansen, H., Gugliemin, M., Romanovsky, V., Shiklomanov, N., Smith, S., and Zhao, L. 2014. Permafrost thermal state. In: State of the Climate in 2013. Bulletin of the American Meteorological Society, 96(7), 15–17, doi.org/10.1175/2012BAMSStateoftheClimate.1.
  • Scherler, M., Schneider, S., Hoelzle, M. and Hauck, C. 2014. A two-sided approach to estimate heat transfer processes within the active layer of the Murtèl–Corvatsch rock glacier. Earth Surface Dynamics, 2, 141–154, doi.org/10.5194/esurf-2-141-2014.
  • Christiansen, H., Noetzli, J., Romanovsky, V., Shiklomanov, N., Smith, S., Viera, G., and Zhao, L. 2013. Permafrost thermal state. In: State of the Climate in 2012. Bulletin of the American Meteorological Society, 15–16, doi.org/10.1175/2013BAMSStateoftheClimate.1.
  • Hauck, C. 2013. New concepts in geophysical surveying and data interpretation for permafrost terrain. Permafrost and Periglacial Processes 24, 131–137, doi.org/10.1002/ppp.1774.
  • Marmy, A., Salzmann, N., Scherler, M. and Hauck, C. 2013. Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions. Environmental Research Letters 8, 035048, doi.org/10.1088/1748-9326/8/0350048.
  • Rosset, E., Hilbich, C., Schneider, S., Hauck, C. 2013. Automatic filtering of ERT monitoring data in mountain permafrost. Near Surface Geophysics 11 (4), 423 – 433, doi.org/10.3997/1873-0604.2013003.
  • Scherler, M., Hauck, C., Hoelzle, M., and Salzmann N. 2013. Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios, Journal of Geophysical Research, Earth Surface, 118, 780–794, doi.org/10.1002/jgrf.20069.
  • Schneider, S., Daengeli, S., Hauck, C., and Hoelzle, M. 2013. A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data, at Murtèl-Corvatsch, Upper Engadin, Swiss Alps. Geographica Helvetica, 68, 1–16, doi.org/10.5194/gh-68-265-2013.
  • Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J. 2012. Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere 6, 807–820, doi.org/10.5194/tc-6-807-2012.
  • Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J. 2012. A statistical permafrost distribution model for the European Alps. The Cryosphere, 6, 125–140, doi.org/10.5194/tc-6-125-2012
  • Hauck, C., Collet, C., Delaloye, R., Hilbich, C., Hoelzle, M., Huss, M., Salzmann, N. 2012. The potential of new measurement and modelling techniques in alpine cryosphere and geomorphology research. Geographica Helvetica 1-2/2012, 26–37, doi.org/10.5194/gh-67-26-2012.
  • Krautblatter, M., and Hauck, C. 2012. Neue Forschungsansätze zur räumlichen und zeitlichen Dynamik des Gebirgspermafrostes und dessen Naturgefahrenpotentials (New approaches to study the spatial and tempral dynamics of mountain permafrost and its geohazard potential). Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research and German Society of Polar Research, 81 (1), 57–68, ISSN: 00322490, hdl:10013/epic.39229.
  • Maurer, H., Hauck, C. and Spillmann, T. 2012. Assessment of Unstable Slopes in Mountain Regions Using Geophysical Methods. 74th EAGE Conference and Exhibition-Workshops, doi.org/10.3997/2214-4609.20149775.
  • Schneider, S., Hoelzle, M., and Hauck, C. 2012. Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps. The Cryosphere, 6, 517–531, doi.org/10.5194/tc-6-517-2012.
  • Zenklusen Mutter, E., and Phillips, M. 2012. Active layer characteristics at ten borehole sites in alpine permafrost Terrain, Switzerland. Permafrost and Periglacial Processes, 23, 138–151, doi.org/10.1002/ppp.1738.

  • Brown, J., Kholodov, A., Romanovsky, V., Yoshikawa, K., Smith, S., Christiansen, H., Viera, G., and Noetzli, J. 2010. The thermal state of permafrost: the IPY-IPA snapshot (2007–2009). Proceedings of the 63rd Canadian geotechnical conference and 6th Canadian permafrost conference, 6pp.  
  • Cremonese, E., Gruber, S. Phillips, M., Pogliotti, P., Boeckli, L., Noetzli, J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K., Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi, R., and Zischg, A. 2011. An inventory of permafrost evidence for the European Alps. The Cryosphere, 5, 651–657, doi.org/10.5194/tc-5-651-2011.
  • Delaloye, R. and Vonder Muehll, D. 1998. Concept for a Swiss permafrost observation network. Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, 134-135.
  • Hauck, C., Böttcher, M. and Maurer, H. 2011. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere, 5, 453–468, doi.org/10.5194/tc-5-453-2011, 2011.
  • Haeberli, W., Hoelzle, M., Keller, F., Schmid, W., Vonder Mühll, D., and Wagner, S. 1993. Monitoring the long-term evolution of mountain permafrost in the Swiss Alps. Proceedings of the 6th International Conference on Permafrost, Beijing, China, 214-219.
  • Hilbich, C., Fuss, C., Hauck, C. 2011. Automated time-lapse ERT for improved process analysis and monitoring of frozen ground, Permafrost and Periglacial Processes 22(4), 306–319, doi.org/10.1002/ppp.732.
  • Scapozza C., Lambiel C., Baron L., Marescot L., Reynard E. 2011. Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps. Geomorphology, 132, 208–221, doi.org/10.1016/j.geomorph.2011.05.010.
  • Lantuit, H., Christiansen, H., Noetzli, J., Romanovsky, V., Shiklomanov, N., Smith, S., Viera, G., and Zhao, L. 2011. Permafrost thermal state. In: State of the Climate in 2010. Bulletin of the American Meteorological Society, 548–549, doi.org/10.1175/1520-0477-92.6.S1.
  • Zenklusen Mutter, E., Blanchet, J., and Phillips, M. 2010. Analysis of ground temperature trends in Alpine permafrost using generalized least squares, Journal of Geophysical Research, 115, F04009, doi.org/10.1029/2009JF001648.
  • Phillips, M., Zenklusen Mutter, E., Kern-Lütschg, M., and Lehning, M. 2009. Rapid degradation of ground ice in a ventilated talus slope: Flüela Pass, Swiss Alps. Permafrost and Periglacial Processes, 20, 1–14, doi.org/10.1002/ppp.638.
  • Vonder Muehll, D., Noetzli, J., and Roer, I. 2008. PERMOS – a comprehensive monitoring network of mountain permafrost in the Swiss Alps. Proceedings of the 9th International Conference on Permafrost, Fairbanks, US, 1869–1874.